3.9.30 \(\int \frac {x^5}{(a+b x^4)^2 \sqrt {c+d x^4}} \, dx\) [830]

3.9.30.1 Optimal result
3.9.30.2 Mathematica [A] (verified)
3.9.30.3 Rubi [A] (verified)
3.9.30.4 Maple [A] (verified)
3.9.30.5 Fricas [B] (verification not implemented)
3.9.30.6 Sympy [F]
3.9.30.7 Maxima [F]
3.9.30.8 Giac [B] (verification not implemented)
3.9.30.9 Mupad [F(-1)]

3.9.30.1 Optimal result

Integrand size = 24, antiderivative size = 93 \[ \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=-\frac {x^2 \sqrt {c+d x^4}}{4 (b c-a d) \left (a+b x^4\right )}+\frac {c \arctan \left (\frac {\sqrt {b c-a d} x^2}{\sqrt {a} \sqrt {c+d x^4}}\right )}{4 \sqrt {a} (b c-a d)^{3/2}} \]

output
1/4*c*arctan(x^2*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^4+c)^(1/2))/(-a*d+b*c)^(3/2 
)/a^(1/2)-1/4*x^2*(d*x^4+c)^(1/2)/(-a*d+b*c)/(b*x^4+a)
 
3.9.30.2 Mathematica [A] (verified)

Time = 1.16 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.20 \[ \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {1}{4} \left (-\frac {x^2 \sqrt {c+d x^4}}{(b c-a d) \left (a+b x^4\right )}+\frac {c \arctan \left (\frac {a \sqrt {d}+b x^2 \left (\sqrt {d} x^2+\sqrt {c+d x^4}\right )}{\sqrt {a} \sqrt {b c-a d}}\right )}{\sqrt {a} (b c-a d)^{3/2}}\right ) \]

input
Integrate[x^5/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 
output
(-((x^2*Sqrt[c + d*x^4])/((b*c - a*d)*(a + b*x^4))) + (c*ArcTan[(a*Sqrt[d] 
 + b*x^2*(Sqrt[d]*x^2 + Sqrt[c + d*x^4]))/(Sqrt[a]*Sqrt[b*c - a*d])])/(Sqr 
t[a]*(b*c - a*d)^(3/2)))/4
 
3.9.30.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {965, 373, 27, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 965

\(\displaystyle \frac {1}{2} \int \frac {x^4}{\left (b x^4+a\right )^2 \sqrt {d x^4+c}}dx^2\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {c}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx^2}{2 (b c-a d)}-\frac {x^2 \sqrt {c+d x^4}}{2 \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {c \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx^2}{2 (b c-a d)}-\frac {x^2 \sqrt {c+d x^4}}{2 \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {1}{2} \left (\frac {c \int \frac {1}{a-(a d-b c) x^4}d\frac {x^2}{\sqrt {d x^4+c}}}{2 (b c-a d)}-\frac {x^2 \sqrt {c+d x^4}}{2 \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{2} \left (\frac {c \arctan \left (\frac {x^2 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^4}}\right )}{2 \sqrt {a} (b c-a d)^{3/2}}-\frac {x^2 \sqrt {c+d x^4}}{2 \left (a+b x^4\right ) (b c-a d)}\right )\)

input
Int[x^5/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 
output
(-1/2*(x^2*Sqrt[c + d*x^4])/((b*c - a*d)*(a + b*x^4)) + (c*ArcTan[(Sqrt[b* 
c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(2*Sqrt[a]*(b*c - a*d)^(3/2)))/2
 

3.9.30.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 965
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), 
 x_Symbol] :> With[{k = GCD[m + 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 
 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /; Free 
Q[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]
 
3.9.30.4 Maple [A] (verified)

Time = 5.56 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.87

method result size
pseudoelliptic \(-\frac {c \left (-\frac {\sqrt {d \,x^{4}+c}\, x^{2}}{c \left (b \,x^{4}+a \right )}+\frac {\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{4}+c}\, a}{x^{2} \sqrt {\left (a d -b c \right ) a}}\right )}{\sqrt {\left (a d -b c \right ) a}}\right )}{4 \left (a d -b c \right )}\) \(81\)
elliptic \(\frac {\sqrt {d \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{8 b \left (a d -b c \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 b^{2} \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}+\frac {\sqrt {d \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{8 b \left (a d -b c \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 b^{2} \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}+\frac {\ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 \sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}-\frac {\ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 \sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}\) \(861\)
default \(\text {Expression too large to display}\) \(1199\)

input
int(x^5/(b*x^4+a)^2/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4*c/(a*d-b*c)*(-(d*x^4+c)^(1/2)*x^2/c/(b*x^4+a)+1/((a*d-b*c)*a)^(1/2)*a 
rctanh((d*x^4+c)^(1/2)/x^2*a/((a*d-b*c)*a)^(1/2)))
 
3.9.30.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 193 vs. \(2 (77) = 154\).

Time = 0.45 (sec) , antiderivative size = 426, normalized size of antiderivative = 4.58 \[ \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\left [-\frac {4 \, \sqrt {d x^{4} + c} {\left (a b c - a^{2} d\right )} x^{2} - {\left (b c x^{4} + a c\right )} \sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{8} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{4} + a^{2} c^{2} + 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{6} - a c x^{2}\right )} \sqrt {d x^{4} + c} \sqrt {-a b c + a^{2} d}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}\right )}{16 \, {\left (a^{2} b^{2} c^{2} - 2 \, a^{3} b c d + a^{4} d^{2} + {\left (a b^{3} c^{2} - 2 \, a^{2} b^{2} c d + a^{3} b d^{2}\right )} x^{4}\right )}}, -\frac {2 \, \sqrt {d x^{4} + c} {\left (a b c - a^{2} d\right )} x^{2} - {\left (b c x^{4} + a c\right )} \sqrt {a b c - a^{2} d} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{4} - a c\right )} \sqrt {d x^{4} + c} \sqrt {a b c - a^{2} d}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{6} + {\left (a b c^{2} - a^{2} c d\right )} x^{2}\right )}}\right )}{8 \, {\left (a^{2} b^{2} c^{2} - 2 \, a^{3} b c d + a^{4} d^{2} + {\left (a b^{3} c^{2} - 2 \, a^{2} b^{2} c d + a^{3} b d^{2}\right )} x^{4}\right )}}\right ] \]

input
integrate(x^5/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")
 
output
[-1/16*(4*sqrt(d*x^4 + c)*(a*b*c - a^2*d)*x^2 - (b*c*x^4 + a*c)*sqrt(-a*b* 
c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^8 - 2*(3*a*b*c^2 - 4*a 
^2*c*d)*x^4 + a^2*c^2 + 4*((b*c - 2*a*d)*x^6 - a*c*x^2)*sqrt(d*x^4 + c)*sq 
rt(-a*b*c + a^2*d))/(b^2*x^8 + 2*a*b*x^4 + a^2)))/(a^2*b^2*c^2 - 2*a^3*b*c 
*d + a^4*d^2 + (a*b^3*c^2 - 2*a^2*b^2*c*d + a^3*b*d^2)*x^4), -1/8*(2*sqrt( 
d*x^4 + c)*(a*b*c - a^2*d)*x^2 - (b*c*x^4 + a*c)*sqrt(a*b*c - a^2*d)*arcta 
n(1/2*((b*c - 2*a*d)*x^4 - a*c)*sqrt(d*x^4 + c)*sqrt(a*b*c - a^2*d)/((a*b* 
c*d - a^2*d^2)*x^6 + (a*b*c^2 - a^2*c*d)*x^2)))/(a^2*b^2*c^2 - 2*a^3*b*c*d 
 + a^4*d^2 + (a*b^3*c^2 - 2*a^2*b^2*c*d + a^3*b*d^2)*x^4)]
 
3.9.30.6 Sympy [F]

\[ \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^{5}}{\left (a + b x^{4}\right )^{2} \sqrt {c + d x^{4}}}\, dx \]

input
integrate(x**5/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)
 
output
Integral(x**5/((a + b*x**4)**2*sqrt(c + d*x**4)), x)
 
3.9.30.7 Maxima [F]

\[ \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x^{5}}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \]

input
integrate(x^5/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")
 
output
integrate(x^5/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 
3.9.30.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 244 vs. \(2 (77) = 154\).

Time = 0.86 (sec) , antiderivative size = 244, normalized size of antiderivative = 2.62 \[ \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {c \sqrt {d} \arctan \left (-\frac {{\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{4 \, \sqrt {a b c d - a^{2} d^{2}} {\left (b c - a d\right )}} + \frac {{\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b c \sqrt {d} - 2 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} a d^{\frac {3}{2}} - b c^{2} \sqrt {d}}{2 \, {\left ({\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} b - 2 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b c + 4 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} a d + b c^{2}\right )} {\left (b^{2} c - a b d\right )}} \]

input
integrate(x^5/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")
 
output
1/4*c*sqrt(d)*arctan(-1/2*((sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b - b*c + 2*a 
*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*d - a^2*d^2)*(b*c - a*d)) + 1/2*( 
(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b*c*sqrt(d) - 2*(sqrt(d)*x^2 - sqrt(d*x^ 
4 + c))^2*a*d^(3/2) - b*c^2*sqrt(d))/(((sqrt(d)*x^2 - sqrt(d*x^4 + c))^4*b 
 - 2*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b*c + 4*(sqrt(d)*x^2 - sqrt(d*x^4 + 
 c))^2*a*d + b*c^2)*(b^2*c - a*b*d))
 
3.9.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^5}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^5}{{\left (b\,x^4+a\right )}^2\,\sqrt {d\,x^4+c}} \,d x \]

input
int(x^5/((a + b*x^4)^2*(c + d*x^4)^(1/2)),x)
 
output
int(x^5/((a + b*x^4)^2*(c + d*x^4)^(1/2)), x)